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ABSTRACT

This report presents a combined analytical and experimental investigation of
turoulent heat transfer on basic and composite configurations at hypersonic speeds.
The analytical results are presented in Volume I, the experimentzal results, including
data-:heory comparisons, are presented in Volume II, and computer programs
incorporating the analytical methods described herein are presented in Volume III.

Two analytical approaches are presented: the Prur method and the turbulent
nonsimilar boundary layer method.

The p,p, method, which is derived from the boundary-layer mome-.cum and
energy integral equations, is recommended for predicting turbulent hea ing rates.
Effects of dissociaticn, pressure and wall temperature gradients, three -dimensional
flow, and nose bluntness are included. Simplified methods for making turbulent
heating estimates using a slide rule or desk calculater are also presented. The
computation of heating rates on a typical reentry configuration in flight and the
extrapolation of test data from ground test facilities to flight are described.

The turbulent nonsimilar boundary layer approach offers several advantages
over previcus methods, and is recommended for specific parametric studies of
turbulent flows, Calculations made using this method have been restricted to ideal
gases. Modifications can be made to include real-gas effects.
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SECTION I

INTRODUCTION

1. REQUIREMENT FOR HEAT TRANSFER PREDICTION METHODS

The need for better methods for estimating aerodynamic hcating rates is contin-
ually increasing. Relatively crude approximations have usually been adequate for
estimating surface temperatures on supersonic aircraft and ablation protection re-
quirements for ballistic reentry capsules. However, the design and operating limits
of hypersonic cruise and maneuverable reentry vchicles of the future will be more
sensitive to aerodynamic heating considerations. This will require more accurate
heat transfer prediction mathods.

The prediction of turbulent heaiing presents a particularly serious problem for
two reasons. First, turbulent heating rates are usually much higher than the corre-
sponding laminar values. Since the conditions required for transition from lamirar to
turbulent flow cannot yet be predicted with confidence, design estimates in regions of
uncertainty musti be based on the higher turbulen! estimates. Secondly, the complexity
of turbulent flows necessitates the use of simplifying approximations and empiricism
in formulating the fundamental flow equations; thus, methods for predicting turbulent
heating rates are inherently less rcliable than laminar methods.

2. PRESENT INVESTIGATION

A two-year investigation, including both analytical and experimental studies, was
conducted to provide and verify methods for predicting turbulent heating ratcs on
basic shapes and composite bodies at hypersonic speeds. Results of the analytical
studies, including recommended methods, are presented in Volume 1 of this report.
Experimental results and data-theory comparisons are presented in Volume II.

Two basic methods are presented. The first, the ppp, program, is recommended
for making turbulent heating estimates. The second, the turbulent nonsimilar program,
represents a new approacn in treating turbulent flows, and is intended for basic studies
of turbulent boundary layer phenomena. Both have been programmed for the SRU 1108
and IBM 7094 digital computers. A description of these computer programs is given
in Volume IIT of this report.

a. PrH. Mcthod

The Py, method for predicting heat transfc and skin friction for both laminar
and turbulent tlows was developed by Richard A. Hanks of The Boeing Company in the
course of the X-20 program. Modifications and refinements of this method were made
under a subsequent NASA contract (Reference 1), The method presented here is




essentially the same as that presented in Reference 1, although some modifications
to the computer program were made during the present study.

The derivations of the basic [ equations presented in References 1 and 2
were based on solutions of the boundary-layer momentum integral equation. This
equation was transformed into an equivalent incompressible form using a coordinate
transformation suggested by Mager in Reference 3. The transformed equation was
solved to obtain an expression for skin friction. The corresponding heat transfer
equation was then obtained using a generalized form of the Reynolds analogy.

A new derivation leading to the same result for heat transfer, but based on a
solution to the transformed boundary-layer energy integral equation, is presented in
Appendix A. The heat transfer equation obtained from the solution of the energy
integral eontains boundary-layer thickness parameters and reference density and
viscosity terms as undefined functions. These functions represent effects of fluid
property variations, finite streamwise and crossflow pressure gradients, and stream-
iine divergence, For laminar flow, these function vere evaluated by exact solutions
for self-similar boundary layers. Analytic expressions were found that agree with
essentially all of the exact similar solutions.

‘The derivation of the basic ppp, heat transfer equation and the correlations used
in defining the undefined functions for ilaminar flow are presented in Appendix A,
Expressions for evaluating the turbulent functions are presented in the following
sections.

Because of the overall complexity of the prpur equations, this method is not
recommended for making hand calculations. llandbook methods for estimating both
laminar and turbulent heating rates using the pypp method are presented in
References 4 and 5. 1 Simplified approximations to the p,u, equations permitting
hand caleulations are presented in Appendix B of this report. Predictions obtained
using the simplified equations are usually within 5% of the computer results.

b. Turbulent Nonsimilar Method

The turbulent nonsimilar method is an extension of the laminar nonsimilar method
reported in References 1 and 6. In this method a semi-empirical expression is used
to establish the Reynolds stress term appearing in the mcmentum equatien. The
corresponding conduction term in the energy equation is then related to the Reynolds
stress by an effective turbulent Prandtl number.

The turbulent nonsimilar method for flows was developed before the present study
was started. During this investigation it was extended to include compressibility effects.

1 Reference 4 supplements Reference 5. Except for delta wings at angle of aitack,
turbulent heating estimates ohtained from these reports are nearly identical,
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The analysis was conducted to provide a method for computing velocity and enthalpy
profiles in a compressible turbulent boundary layer including the effects of pressure
and wall temperature gradients.

The derivation of the turbulent nonsimilar equations is presented in Appendix C of
this report.
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SECTION 11

BASIC METHODS

In contrast to the well-developed theorcetical methods available for laminar flows,
no truly analytic basis exists for treating turbulent boundary layers. The unsteady
velocity fluctuations greatly complicate the mathematical description; consequently,
ali turbulent methods are founded, at least in part, on empirical correlations.

1. GENERAL APPROACHES

Most turbulent analyses are based on the assumption that turbulent flows are
analogous to laminar flows with special viscous and heat conduction properties. These
special properties can be expressed in either the fundamental equations of motion in
differential form or in the boundary layer mementum and energy integral equations.

An example of the first type is furnished by the well-known mixing length theory.

a. Mixing Length Theory

For incompressible flow, Prandtl hypothesized that:
2 du

Cnyfiey
oy

oy

)

The mixing length is denoted by £. Prandtl further suggested that £ was nearly
proportional to the distance from the wall. Equation (1), using the approximation that
£ is proportion to y, was found to provide good incompressible skin-friction estimates
and velocity profiles when the shear was assumed to be constant with y (Reference 7).
This latter assumption is clearly unvealistic for exterior boundary layers, since the
Reynolds stress must approach zero at the edge of the boundary layer.

Many other methods using mixing length theory have been reported, including a
widely used method for compressible flows developed by van Driest (Reference 8).
However, most of these methods are based on assumed velocity or shear profiles. In
addition, restrictive assumptions regarding flow similarity havce been required in order
to solve the flow equations, thus limiting these analyses to flows with no pressure or
wall temperature gradients. Fewer assumptions are required by the turbuient non-
similar method, which is deseribed in Appendix C. The method utilizes a shear
correlation similar to the mixing length correlation given by Equatior (1), but removes
many of the restrictions imposed by previous analyses. By solving the boundary-layer
conservation equations in partial differential form, velocity and temperature profiles
are then ohbtained ar part of the solution. No limitations arc imposcd regarding pres-
sure or wall temperature gradients except that separated flows cannot be treated.




b. Integral Methods

Boundary layer methods derived from momentum and energy integral equations
are often much easier to use than methods requiring the exact solution of the flow
equations. The energy integral equation, Egq. {A-9), derived in Appendix A of this
report and the momentum integ=al equation derived in Appendix B of Reference 2 can
be expressed in the forms given below:

H =99_+Q[_1_3ie+_lape,_l_ez+;ﬁ.zf_]

P, ax u, 9x p, ox rax f 9x

T ou op E

w_ 90 | @:0%/6) "e, 1 %Te 1or Ef @)
2 9x u dx p 90x rox f9x

pu, e e

The equations given above are exact, except for the usual boundary layer assumptions,
and are valid for both laminar and turbulent flows. However, the solutions to
Equation (2) are quite different for laminar and turbulent flows, since the velocity and

enthalpy profile parameters used in solving the equations are different.

2. PpHr METHOD

a. Basic Formulation

The pyir equations are derived in Appendix A from the boundary layer energy
and momentum integral equations. The basic correlations are of Blasius type, and
are given by:

e i “q 3)
T ,J“O rp n Q1 l/m
e e
o
Tw, T pr “rue Cm

= (4)

&




The symbols m, Cm, and CQ are profile parameters, 6 is the momentum thickness,
and Q is the energy thickness. Momentum and energy thicknesses are defined in
Appendix A, as are methods for evaluating the reference density-viscosity product
p K.

rir-

The integral equations are reduced to an incompressible form using a modified
Stewartson transformation and are given in detail in Appendix A, The resulting
equations, in physical coordinates, for H, T“./ue, and 8 are:

m
m+1
H = Cx x"o pr “rue '\eq 5
FPr xp( 2 ®)
eq I»l0
m
m+1
:\i_cx Ho | B Prle ey .
u S 2 (6)
e eq u
o
m
P u m-+1
-1 23 .
o= m C 0 r'r ‘)e eq )
m X pu 2
e e “o

where the equ.valent distance parameters Xeq and Seq are defined by:

X
1
m-+1
1 —
=] E m
xeq,T [ m+1 pr Br e (ri®) ek (8)
E, M
JT pr e Ye (rf™) ] 0
]
X
t m+1
S ! (Ey ™
eq, T [ m-+17 P Hp b, 1) dx 9
A E m
]
}T pr e ue (ri®-) ] 0
X

1




The equivalent distance Xea, T is used only in computing heat transfer, and Seq, T
only 1n computing skin-friction and momentum thickness.

Methods for evaluating the terms appe ring in Equations (3) through (9) for
laminar flow are given in Appendix A. Expressions fcr evaluating the equstions
given in the following sections rcflect the latest state-of-the-art, and are essentially
the sam : as reported in References 1 and 4.

For turbulent flow, the profile constants C, and m are discussed later in this
section. Methods for evaluating the other parameters are presented in the following
sections.

Symbol Definition Section
pr “r reference density-viscosity product III
B reference stagnation viscosity I1I
FPr influence of Prandtl number on heat transfer, c';/c';or -1 111
£ influence of atomic diffusion on heat transfer, III
a/ay
'\Le =1
J profile parameter reflecting pressure gradient effects v

on heat transfer

P profile parameter reflecting pressure gradient effects 1AY
on wall shear stress

r streamline divergence pzrameter due tc body geometry \Y

f streamline divergence parameter due to crossflow \Y
pressure gradients

ol

crossflow momentum thickness \Y

b. Evaluation of Cx and m

The profile parameters Cx and m are by definition; as in the laminar case,
independent of pressure gradients and flow compressibility; hence, these parameters
can be evaluated on the basis of incompressible flat-plate flow. For this case
Pr Ky = Pe Hes Hg = He: and Xeq = Seq = x; thus, Equations (5) and (6) simplify to:

C u _—
X ¢ m+1
= N
H=— [ R, e] (10)

-]




(11)

When C =.0296 and m =4, Equation (10) corresponds to the Colburn equation, and
Equation (11) becomes the familiar Blasius expression. No heat transfer data are
available for comparative purposes, since the very low heating rates associated with
nearly incompressible gas flows cannot be accuraiely measured. Comparisons with
skin frictiocn data show that Cy and m are themselves functions of the Reynolds
number. To include this variation with Reynolds numbers would greatly complicate
computations; hence, an alternate formulation for the skin friction expression was
sought.

After a survey of several proposed incoipressible friction formulas, a minor
modification of the Schultz-Grunow equation (Reference 9) was selected:

& - .37 12)
f 2.584 -
N - 3000
log)p Ng e )

The modification is the addition of the constant 3000 to the Reynolds number. Thig
modification was made in order to provide more realistic values of Cy at Reynolds
numbers below 10% (see Figure 1).

The modificd and unmodified expressions are shown in Figure 1, together with
other available methods. As shown, there is little difference between the various
methods, except that the Blasius equation falls low at high values of Revnolds number.
Equation (12) was originally selected because of its slight conservatism, although anv
of the other expressions could have heen used.

The form of Equation (12) does not lend itself to calculations in the framewc k of
Equations (10) and (11) due to the variation of m with Reynolds number. However
comparisons have been made that show that m = 4 is an adequate approximation for
evaluating geometric effects. For example, if m is evaluated at particular values
of Reynolds number using Equation {12) the following comparisons are obtained:

H H .
N m = 1 ___tone cylinder
s . 09 %5, "fiat plate Hcylincler, m - 4.0
d (In NR,e)
10° 3. 45 1. 20 .99
4.2 x 10° 4.0 1.17 1. 00
10" 4, 34 L. 16 1. 00
10° 6. 12 111 1. 01
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Thus the effect of variations in m is seen to be small. Accordingly, m = 4.0 was
selected for calculation of geometric effects presented in Sections III, IV, and V.

However, since sizeable errors can result from using m = 4 in Equations (5) -nd
(6), the basic form of Equation (12) has been adopted. The new expressions replacing
Equations (5) and (() are:

185 &£ N
H.. - Yo R.r,Q (13)
T P %eq,T Ilo o~ s 3000)] 2. 584
9 810 V'R, 1,Q
. N
Tw, T _ 185 #0 R,r,S (1)
s 2.584
Ye eq, T lloglo Np Lo 3000)] °
where
\ _pr uruexeq,T (15
“R,r,Q 2 )
#0
and
N - pr “r e Seq,T (16)
“R,r,S 2
uO

The definitions of Xeq, T and S¢q, T ave given by Equations (8) and (9), respectively.

The Schultz-Grunow expression for momentum thickness of an incompressible
flat-plate boundary layer is given in Reference 9 by:

X

= 21835
6 =.2135 1 NP (17
%810 "R,e -
The equivalent Pr My expression is:
N
. ko R,r,S
g =.2135 5 76l (18)

u_ g, . _
e e 10g10 NR,r,S .407
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SECTION III

COMPRESSIBILITY AND DISSOCIATION EFFECTS

2 The influence of conipressibility and dissociation effects on heat transfer and
skin friction is usually accounted for by basing the density and transport properties
(i.e., coefficients of conductivity and viscosity) on some reference thermal param-
eter. For example, reference tempzratures (cr enthalpies) based on a weighted
average of the wall, adiabatic wall, and ooundary layer edge temperatures (or
enthalpies) are commonly used as a thermal reference. The PpH, method differs
from the common reference temperature methods in two respects. First, a reference
densitv-viscosity product P.H, is evaluated instead of a reference temperature and
secondly, a reference stagnation viscosity p, must be evaluated. Other correction
terms appearing in Equation (13) reflecting effects of compressibility and dissocia-
tion are expressed by the Prandtl number function Fpr and the Lewis number
function &.

1. EVALUATION OF REFERENCE DENSITY-VISCOSITY PRODUCT

The reference density-viscosity product for turbulent flow is taken to be the
laminar value defined by Equation (A-42) in Appendix A and plotted in Figure 2 (for
air in chemical equilibrium, the density-viscosity ratios required to obtain pyHy
can be obtained from Figure 3j. This basic identity is suggested by the fact that
Pr My appears only in connection with the laminar shear terms of the turbulent
boundary layer equatiocnsZ. Further justification is provided by the excellent agree-
ment between estimates from the P.H¥, method and most experimental data obtained
from several facilities covering a wide range of test conditions.

Comparisons of pppy, predictions with flat plate heat transfer data obtained from
the Cornell Aeronautical Laboratory (CAL) 48" shock tunnel and reported in Reference
1 are shown in Figure 4. The p.u,. correlations given by Equation (A-42) provide
good agreement with X-15 flight data as shown in Figure 5. The X-15 comparisons
are especially noteworthy because of the lack of agreement with other widely used
methods. These comparisons demonstrate good agreement between theoretical pre-
dictions and experimental measurements. More recent flat plate data obtained from
the CAL shock tunnels and reported in Reference 10 are shown in Volume II of this
report to be substantially higher than the p,.p,. estimates. The reason for the
discrepancy between the two sets of data is not fully understood at this time, Some
of the possible causes are discussed in Volume 11,

(8]

E.g., Equation (13) in Reference 3.
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2. REFERENCE STAGNATION VISCOSITY

Since the reference stagnation viscesity does not afpear in the laminar equations,
no inforn.ation regarding its evaluation can be obtained by examining the laminar
solutions. The reference stagnaticn viscosity is assumed by Mager (Reference 3) to
be the viscosity evaluated at stagnation conditions. For real-gas flow with the vis-
cosity dependent on the pressure it seems ore realistic to consider the local flow
composition rather than the composition corresponding to stagnation conditions,
Accordingly, M, is caiculated with the Sutherland law and py using the value of
specific heat corresponding to PyH,. The result is:

I(ZT) + zool

i

When p, 4. and local pressure are known, the compressibflity-temperature product
ZT can be obtained for air in chemical equilibrium from Figure 3. The corresponding
reference enthalpy i, can then be determined using Figure 6.

(19)

3. EVALUATION OF PRANDTL NUMBER AND LEWIS NUMBER PARAMETERS

As with the p.u,. correlations, the effects of Prandtl number on turbulent flat
plate heat transfer are assumed to be identical to the laminar case, the correction
term is:

F., =0’ (20)

Where ¢ is the partial Prandtl number for translation, rotation, and vibration. The
subscript r denotes that o is evaluated at the enthalpy and composition correspond-
ing to Ppriy. For equilibrium air, o can be obtained from Figure 7.

Similarly. no analytic basis has been found for determining the influence of
atomic diffusion on turbulent neating rates. Furthermore, the combination of high
pressures and temperatures required to obtain significant dissociation of air in
turbulent boundary layers cannot be obtained in most present-day ground test
facilities,
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In the absence of a rigorous method, the influence of dissociation is assumed to
be the same for turbulent and laminar flows. The laminar expression for &£ is given
by Equation (A-41) as:

Fd =1+(NLe'52-1)(lIi)'r> (21

A plot of £ as a function of enthalpy and pressure for equilibrium air and a Lewis
number of 1.4 is presented in Figure 20 in Appendix A.
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SECTION IV
STREAMWISE PRESSURE GRADIENT EFFECTS

Exeept for boundary laver profiles. the effects of pressure variations on heating
and skin friction are reflected in the produet P, M u, appearing in the integrand in
Equations (8} and (9). Changes 1n boundary layer profiies resulting from pressure
gradients are aceounted for in It and P appearing in the same equations.

At the time that these eorrelations were made (1964 and 1963), no reliable methods
were available for estimating turbulent profile alterations due to streamwise pressure
gradients. Consequently, the selection of expressions for evaluating J.. and PT are
based onn eomparisons with experimental data. Thne general form of these equations
1s based on the corresponding laminar relations presented in Appendix A. The

expressions selceted are:

= = & = = 0 2
Jr=J9L |1 LT18(Y/1 Fy sFr s 1)] when B8_>0 (22)
and,
- -1
= g E i + R B - hn ] 23
Jp=d, ll 718 (/1 FisFr o 1)] whon @ <0 (23)
Also:
5
PP =J (21)

Expressions for evaluating F, and F g are given in Appendix A by
Equations (A-50) through (A-53). =
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SECTION V

THREE-DIMENSIONAL EFFECTS

Although three-dimensional effects on turbulent heating are significantly less than
for laminar flow, these effects can still be substantial. In particular, sizeable in-
creases in heating due to crossflow pressure gradients can be experienced on leading
edges and along the stagnation line of axisymmetric bodies at angles of attack.

In the present analysis, three-dimensional effects on heat transier are reflected
in the equivalent distance defined by Equation (8). The influence of streamline diver-
gence due only to body geometry is determined by r, and that due to pressure gradi-
ents normal to the direction of flow by f. The combined effects of body geometry and

crossflow pressure gradients on the streamline divergence at the boundary layer edge
is defined by A, where:

Streamlines __ A(Xx) ———=x

The reason for treating the two causes of three-dimensional flow separately is
that crossflow pressure gradients distort the crossflow velocity profile, whereas body
geometry does not. The evaluation of the influence of this distortion on heat transfer
is easier when crossflow effects are considered separately from geometric effects.

1. GEOMETRIC EFFECTS—r FACTOR

The streamline divergence parameter r is generallyusedin connection with axisym-
metric flows, and is then defined as the circular radi.us of a body. In this analysis r is
considered to be the distance between two adjacent streamlines at the edge of the bound-
ary layer over the respective surface, and in the absence of crossflow pressure
gradients. For most applications r can also be considered to be proportional to the
body radius of curvature in the plane normal to the streamline.

An exception to this rule, delta wings at angle of attack, is discussed later in this
section.
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The simplest example of three-dimensional flow occurs on an unyawed cone in a
uniform: hvpersonic flow. Noting that pressure is constant, and considering that the
wall temperature is also constant, the product p,.up.ue 2ppearing in Equations (8) and
(9) is constant. Also, from Se ‘on IV it is seen that JT and Pp are unity; hence,
Equations (3) and (9) reduce to:

X
1 1 5/4
X =8 = ——f r dx 25
eq, T eq, T [”5/4 0 &S
*1

The streamline divergence parameter r is proportional to the circular radius,
and is therefore proportional to x, Considering that Il is appreximately proportional
to -‘eq,T_'2v it is seen that:

L (g) = 1.176 (26)

For other tvpes of unyawed axisymmetric bodies, the pressure is not usually constant,
and the variation in p .p.u, must be considered.

2, CROSSFLOW PRESSURE GRADIENTS~f FACTOR

Estimating the effects of crossflow pressure gradients is more difficult than
effects of hody geometry because of rotation of the streamline patterns in the boundary
layer, For example, consider the differences in the streamline pattern on an unyawed
cone and a swept cylinder stagnation line sketched below:

o Streamlines
ADGX—\ Stream- 7 y =96
lines at Stagnation .-~
ines a g L = §/2

- ! < y
y all values line : \
\ N

\ o SN —-—y=0

Conical Flow Swept Cylinder Flow

The crossflow streamline divergence parcimeter f can be considered as proportional
to the distance between two adjacent streamlines at the edge of the boundary layer in
the ahsence of geometric cffects. Methods of estimating f are presented later in this

section.
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The influence of the streamline rotation illustrated above is reilected in the cross-
flow momentuin thickness ratio . When streamiines are parallel throughout the
depth of the houndary layer at a given station, then u/ue = v/ve. It is seen from
Fquation (A-25) that E is unity for this case, and the effect of f becomes identical
to that of r in the expression for heat transfer, Equation (5).

a, Evaluation of ET

The behavior of E in turbulent flow can be described only qualitatively, and most
published analyses neglect its effect. However, its effect is usually to increase heat-
ing rates and is therefore included in the present method. As in the streamwise
pressure gradient case, the turbulent values are based on modifications of the corre-
sponding laminar correlations. rfowever, unlike the streamwise parameter Ji, EL
is strongly influenced by Mach number, so that a dual modification is required.

Considering incompressible flow, it is seen from the definition of Equation (A-25)
that the upper limit on E is 6*/0 unless the crossflow velocity component v within
the boundary layer exceeds the external value., Laminar solutions (Reference 11) show
that velocity overshoots (v/ve > 1) do not occur for cold-wall zero-Mach-number flow,
hence a correction factor of the following form is suggested:

Exo  (0%/0)p

EL,o ((5”‘/6)L

= constant (27)

However, an inconsistency is noted in that ET o Sshould be unity when EL o IS unity,
since this condition implies that no profile distortion occurs cue to crossﬂow pressure
gradients (i.e., v/vo = u/u,). This inconsistency is avoided by adopting the following
expression:

ETo-l

— = 0.7 (28)

=i

L,o

The constant .77 was selected primarily on the basis of experimental heating rates on
swept cylinders,

In Equation (28), EL, o is just EL evaluated for Mach number equal to zero. For
Mach number zero. Equation (A-58) reduces to:

1
q 2§ G
1m,c,o 2 (le SL lw) (29)

o
o

tre
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Assuming that F3 c = 1.0, and using Equations (28) and (A-49),

= = exp K
. = 1- + -1)(2
Fp o= 175 (VISFg )( 2C'o) (30)
. = (7 NZT
where 20, o ( T)m. o'( )e. SL
and
cxp K=0when N < .05and .99 < N £1,01,
2
expK=-,194cxp [- 3 N(N-1)] when .05 < N <,99,
f)
exp K=.194 exp [- § (N-1)] when N > 1.01, and N = (x/rf) (9rf/3x).
The effect or Mach number on ET was determined from observation of empirical
trends in swept cvlinder stagnation-line turbulent heat-transfer data, as:
- -~ 4
E E
T L
bo(h)
ET,0 \EL o
The final expression for ET now bhecomss:
E.=1+.55 (V1+F -1) 2z JPR
T 1 Z,c,0 '\ ¢,0
exp K 4
1+.718 (V1+ Fo - 1)(2z,) PR 7
: : (32)

1+.718 (V1+F -1)(2zc o)epr

) Z’C!o ’

where the sign on the exponents is plus when 3(rf)/dx is positive, and negative
when 3(rf)/3dx is negative. Although the analysis leading to Equation (32) is based
on order-of-magnitude approximations, heat transfer estimates obtained using this
method are shown in Figure 8 to agree reasonably well with test data obtained at the
stagnation line of a swept cylinder.
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b, Evaluation of f

1) General Equation for Axisymmetric Bodies

The streamline divergence parameter f is obtained from a solution of the cross-
flow momentum equa:ion for inviscid flow given by:

8\'e B\'e 8Pe
—== _— e O
Pe'e “ax PeVe oy dy (33)

The coordinate system is defined in the sketches shown below:

s

Differentiating Equation (33) with respect to y, and noting that at the stagnation
line v, = aue/ay = ape/ay = 0, then:

2 2

2
8\'e - 3 Ve ad Pe
= + = -
Pe dy Pele axay 2 (34)

ay

For most configurations, pressures are more easily expressed as a function of
x and ¢. Equation (34) is now transformed to (x, ¢) coordinates. The relations for
this transformation are:

a() 19
o ¢
80| . 20| _edra0) .
X ly 0Xx 0 r dx O9e¢ -
In the transformed system, Equation (34) becomes:
2
p. /dv pu o2y ov_dr/dx a°p
_e<_e>+ ee[__e___@ ]=__1 e @
r 99 r |9x3¢ o9 r 1 r2 89)2
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Equation (37) cannot be easily solved unless it is assumed that 62'.'e/6x8¢ =9,
This assumption is clearly valid for yawed cones, and numerical results indicate that
errors introduced hy neglecting this term on yawed ogives are small. Accordingly,
Equation (37) is now simplified to:

() - & l . __I; = 0 (38)

where

<
n

v /u
e e

ol
n

2
pe/ Pele

The solution to Equation (38) is given by the familiar quadratic equation,
resulting in:

R——
ov _ 1 }dr dr P
o A B - TS S - i
29 2 |dx \/(dx) 4 a¢2] (39)

The proper sign in Equation (39) is positive, as seen in the special case for the stag-
nation line of a swept cylinder (8r/9x = 0) for which the positive value of 3V/3¢ shows
diverging streamlines, Thus:

QJIQJ
B <l

=+ f -821'>/ae>2

It is seen from Equation (39) that when 82P/8¢2 = 0, then 8v/d¢ = or/dx.
Thus, 8V/3¢ reflects the streamline divergence due to body geometry as well as
crossflow pressure gradients, This result appears to be inconsistent with Equation
(A-10), which shows that v includes only crossflow effects. The reason for this
apparent contradiction is that in the analysis shown above, v is defined as the velocity
component normal to lines of constant y, but in Appendix A, v is the component
normal to lines of constant ¢. With the terminology used in this section:

19r, 13f _ 1097
rox f 9x r 3¢
or,
LGl - sinn+ in2 -4ﬁ‘ 40
f ox 2r S sin-1 902 (40)
where

sinn = 9r/9x

o
-1




2) Evaluation of 32P/002

Near the stagnation line the pressure variation with ¢ is defined hy:

2
. osing
Cp = Cp gy — 2, (41)
sin 6o,
where 6 is the angle of the surfac: with respect to the free-stream flow, For an
axisymmetric body:
sind = cosa sinn + sina cosn coso (42)
Using Fquations (41) and (42), it is easily shown that:
2 P
o P = 1 sina@ cos 7 °°
S =-2P ) =————||1-5 (43)
8(32 [snn(a+n)]< Pe)

Methods for evaluating P for a few simple geometries are presented in Section VIII,

3. SPECIAL CASES

a. Swept Cylinder Stagnation Linc

For the stagnation line of swept cylinders dr/dx = 0, thus only crossflow effects
need be considered. For this case, Equation (40) reduces to:

1 of 1 8°P
== .= — (44)

f oax r 3¢2
2= 2, .
9 P/8¢ " isfound from Equation (43). Then,

) (45)

82
f = exn <- —
99

| ot

i
[\




For this case P,.H.ug can normally be considered constant, and J is seen to be
unity ( B = 0). Equation (8) now simplifies to:

5
1 fxl iE
X = m—— (% dx
eq, T S
i
£
X, 2=
1 9P
_ ————[1- exp <—1 —2> (46)
5 T3P "o
1T gl

X o= (47)

b. Yawed Cone Stagnation Line

The flow along the stagnatic.~ line of a yawed cone diifers from that on the swept
cylinder only in that:

dr sin
dx n

where 7 is the cone half-angle (degrees). For this case, Equation (40) becomes:

2_‘
1
..}-g{rz-z—— -1 + /1 ..4_.2_.(1_12)_ (48)
: X \  sinn de

A solution for f is given by:

2_—|
N=—;— L+, [1-—2 <42 (49)
sin ' n do¢

|
o
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Again, pr“r“e can be considered constant, and JT assumed to be unity. Hence,

. = pa
' . 1 N '-4—(1 : LT.\) _
'\eq T = — X dx
‘ ~ (1 - E.N)
1 (1-ELN) ~0
1
X
1
= 3 (30)
1 -7 (1-ELN)

c. Delta Wing Centerline

Three-dimensional effects along the wing centerline of delta wings at angles of
attack were estimated using a riethod presented in References 2 and 4. This method
is based on numerical solutions by the method of Kennet (Reference 12) and wedge
theorv. The method of Reference 12 is valid only at high angles of attack where the
shock wave is detached from the leading edges, while wedge theory is applicable only
at low angles of attack. The method of Reference 2 uses the results of Kennet and
wedge theory to provide a means of making estimates at intermediate angles of attack.

Near the wing centerline it was {ound that the edge streamlines could be
expressed by:

Axx' (51)

A correlation for n reported in Reference 2 is given by:

2
M
— n -
= IRyt N . L (52)
n= (1+0**/B) CL 5
Mn + 1
where 1
2
M 2 -1 u 2
-1 -1 2 1 1 ©
o** = tan _I 1+ 1 5 a =1
* T M v
L M, In e
B=190°-A
-1 sin a
M = M _ sin | ——e
il In : o S0 [ = (cos o COoS A)]

NCL is presented as a function of ¢**/3 and sweep angle A in Figure 9,
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In estimating three-dimensional flow effects orn heating it is again necessary to
separate the influence of geometry and crossflow pressure gradients. In this case r
can vary with x even though no body curvature exists. This variation is caused by
shock wave curvature, and cannot be easily estimated. However, it can be showr
from the spanwise momentum equation that crossflow pressure gradients will cause
streamline curvature. Hence, it is concluded that when the streaml nes are straight
the influence of crossflow pressure gradients can be neglected (df/dx = 0). This con-
dition is satisfied when n is either zero (two-dimensional flow) or unity (conical flow).
The following relationships were found to satisfy these two conditions.

\
rcK‘\.n(?.-n)
k n< 1
fc:.\'n(n-l)
rocx 1
n-1 n>1 (53)
faex




SFCTION VI

NONISOTHERMAL WALL EFFECTS

Nearly all methods for estimating turbulent heating rates are applicable only to
isothermal surfaces., However, in practice, sizeable wall temperature gradients can
exist because of variations in local heating rates, surface emissivities, and the
presence of internal heat sinks (e.g., cryogenics). In evaluating these effects it is
convenient to consider separately the influence of variations of temperature level and
that of temperature gradients,

Boundary iayer growth is influenced by local wall temperature. Consequently,
the boundary layer thickness, and therefore, ihe local heat transfer coefficient, is
dependent on the wall temperature at all upstream locations, The influence of up-
stream variations in wall temperature are reflected through the P.u. terms in the
equivalent distances defined by Equations (8) and (9). However, these effects on heat
transfer rates are usually much smaller than the effects of the corresponding thermal
gradients.

The following paragraphs describe a method presented in Reference 1 for esti-
mating effects of thermal gradients. In this method the influence of thermal gradients

on heat transfer rates is accounted for by introducing an effective thermal potential
term ¢, where:

Q= H(iy -iy o*®) (54)

The subscript o denotes that the wall enthalpy is evaluated at x = 0, The method
for evaluating & is essentially a modification of a method proposed by Seban and
described in Reference 13.3 The approximation of QT suggested by Sehan is:

x_ di -1/10
1 w _9/10
& = - - ¢
T, xx, ’{ ] [1 X ] dx (59)

where

X = x/x1

3 The derivation presented in Reference 13 is based on wall temperatures instead of
enthalpies.
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In spite of its innocuous appearance, Equation (55) cannot be easily integrated,
Even numerical integration is difficult because of the singularity occurring when
X =X, An alternate formulation is presented in Reference 14 that permits an eusier
numerical solution as follows:

Y dy 1_;Vm]d“0d.= ijf§dx 6
& X X ax  dx (56)
0 0
wiere
X -1/10

— [ 9/10

S = f |1- (£/x)) / | d(g/x)) (57)
0

where ¢t is a dummy variable in X,

Solutions to Equation (57) are presented in tabular form in Reference 14. If i
is continuous, the integral in Equation (56) can be obtained numerically using:

W

X n

di = i . -1
1 “w dS w,i  w,i-1l=z =
¢ = — —dx = E —_ - =
T, x=x; _[ dx  dx X ‘i=n =1 xi -xi_1 [Si Si—l] (58)

The solution of Equation (58) is still tedious, since the numerical integration
from x -= 0 must be repeated at each station in x, The computations can be signifi-
cautly reduced by using the following approximation:

-1/10
- -9/10]
iy % kR

!

Isi'sr1]*[

where

Thic method has been incorporated into the 2. p,. program (Volume III). Program
results are snown in Figur - 10 to agree well with experimental data reported in Refer-
ence 13, Comparisons between results from Eguations (57) and (59) are given below:

(8; - 8 _/& =%,
F 3 < Refererce 13
“i “i-1 Equation (57) Equation (59)
) 0 1,013 1,015
.3 0 1,024 1. 030
.3 . 15 1. 033 1, 038
.65 .0 1,114 1,117
1 o 7 1,297 1,306
1 .85 1,400 1.411
| L 97 1,665 1688
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The foregoing analysis is restricted to flat plate flows. The influence of pressure
gradients and three-dimensional effects are included bv replacing the dimensionless
streanmwise distance X with an equivalent distance ="I' where

_ _ <
f p_pu et g f 'G_dx
— 0 0 T
T B 1 Iy ) X (60)
f p pu (rf ‘)')/4 dx f Gde
0 0

The basis for this definition of §"I‘ rests primarily on a similar analysis for laminar
flows presecnted in Reference 1.

The set of equations for estimating the effects of wall temperature gradients is
given in finite difference form by:

ap = Hply - I‘w,o+ ¢ (61)
where .
= i ; = 9/10}-1/9
QT B .Z] Gw,i iy, i-D [1- )
l:
= S
_ S 1/3(si si_l)
si = -
Sn
and

i
G. - G, - X,
]Z-“l( b 1)(XJ Yl'l)

=t

i_n
G. -G, )(x. -Xx.
¥(J J‘l'(J J'1)




SECTION VII

NOSE BLUNTNESS EFFECTS

The flow field surrounding a vehicle in hypersonic flight is dependent on the nose
geometry. The presence of a blunt rose, for example, tends to increase static tem-
perature and decrease velocity at the boundary layer edge. This effect, which can
extend many diameters downstream of the nose, can ciuse a substantial decrease
(30 to 40 percent) in aerodynamic heating rates.

Nose bluntness effects are dependent on the vehicle configuration, Mach number,
Reynolds number, wall cooling, and total enthalpy (real gas effects). Two limiting
cases are immediately recognized. A good estimate of the upper bound on heating can
be obtained by assuming sharp hody values fcr local velocity and enthalpy. Conversely,
the lower limit is obtained by assuming all of the fluid in the boundary layer has passed
through a normal shock in computing local flow properties. The flow conditions at the
boundary layer edge are then obtained assuming an isentropic expansion from the stag-
nation to the local pressure. This approach is restricted to equilibrium or frozenflows,

An approximate method for interpolating between the upper and lower heating limits
was developed during the present study. The derivation of this method is presented in
this section, and data-theory comparisons are presented in Volume II of this report.

1. SHOCK ANGLE EFFECTS ON STANTON NUMBER

The first step in the present analysis was to determine the influence of the shock
angle € on the Stanton number NSt' Calculations of Ng; were made using the P, 4,
method for edge velocities and static enthalpies corresponding to several shock angles.
Local static pressures were assumed to be unaffected by bluntness. The local flow
properties were calculated assuming an isentropic expansion hehind the shock wave.
The results, shown in Figure 11, indicate that:

N x . sinze N N ) 2
st T UstNs T2 (Ngt sh ™ Nat, ns (&)

“sh

The subscript NS denotes that the evaluation is made for 4 normal shock (¢ = 0) and
Sh denotes that the evaluation is for a sharp body with an attached shock.
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2, MASS CONSERVATION ANALYSIS

The shock strength applying to the boundary layer at any given location was deter-
mined using the simple streamtube concept sketched below:

Boundary
layer
< S
intersection M tube //
| ¥

The mass flow rate, m, in the streamtube entering the shock layer is:

h
Stagnation —/

point

2

1
S P u by (63)

" Shock
Similarly, the mass flow rate in the boundary layer at S = S, is:
6
Y = = s *
mBL, S=SI A '/0‘ pudy peue(é 6*)A (64)
The angle ¢ determines the width of the streamtube at the shock, and A is the cor-

responding streamtube width at the boundary layer edge. Since the mass flow must
be constant in the streamtube:

1 2
— ) g = - *
p pm\.mh id peue(é 6¥)A (65)

The relationship hetween the streamtube height h and the shock angle ¢ is illustrated
in the sketch on the following page.

Downstream of the n:atching point, ¢ is assumed to he uninfluenced by bluntness.
Upstream, the shock wave radius of curvature R' is assumed to be constant, and is
expressed by

' °m
R Rilge—m (56)

Hence,

t Qm
h = R sine¢ « Rn sin ¢ 50° - T (67)
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Substituting Equation (67) into Equation (65) and solving for Sin2€ gives

G2 Pele (-6 (% - ‘m\' 4 (68)
s e (e ) ()
i m

n

Methods for obtaining the streamtube width A are presented in Section V. On the
hemisphere, the flow is assumed to be axisymmetric. At the tangent point TP of the
hemisphere-wing centerline

ATP ~ ¢ Rrl cos ¢ (69)

The angle delta is the angle of the nody surface with respe.t to the free stream
flowv, Using Equation (69), Equation (68) becomes

2 2
pu °
L2 ew [6-6* /90 - ‘m A
sin € chu ( R >\ Py ><A >uos mn (70)
(1o} \ n

oo m
3. FEVALUATION OF (6 - 6%*)

If pressure gradient effects are neglected, the thickness parameter (§ -6*) is
easily related to the momentum thickress ¢. Following the practice of Beckwith and
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Gallagher (Reference 14), it is assumed that the velocity and enthaipy profiles can
be related to the corresponding incompressible profiles by the following transformation:

Y = f(p/p ) dy
0 e

=Y 71

The velocity ratio u/u, is then considered to be a function only of Y/8, and indepen-
dent of wall cooling and Mach nui.sher. Thus:

1

6P _
/—zdy f uid(Y/é)
6 - 6% _ 0 pce _ 0 c
8 1
6 _
f pﬁ (1-&‘_)(13, / ul(l-ui)d(\’/o)
0 pee e 0 c e
[ b6-6% _
- ( - ) (12)

1/
If the influence of pressure gradients is neglected, then u,/ue = (Y/6)1’7, which gives:

6-6*
6

= 9.0 (73)

The momentum thickness € can be obtained either by using the p.p,. prograra
described in Volume IIf or from Equation (18).

4, EVALUATION OF BLUNT BODY CONSTANT Cq

Using Equations (70) and (73), Equation (62) becomes:

2
N oN s CB PUe \ [COB 9 A 90" _ ¢ o | N
t 2 '
St 8 sin €, Releo Rn Arp ?m St,Sh St, NS

(7

€, 1S assumed to correspond to the equivalent attachcd shock angle. Bluntness
affects For Ue 6, and A. However, including this effect would require a tedious
iterative treatment, Excellent agrcement with data was obtained, however, when
these parameters were computed for an attached shock along with the approximation
that CB =17,




SECTION Vil

APPLICATIONS

Fquations and correlations defining the p.p,. method for computing turbulent
heating rates are presented in preceding sections and in Appendix A of this volume.
In this section, applications of this method in estimating turbulent heating on a blunt
delta wing configuration during orbital reentry are described. Three gas models are
used in order to illustrate real-gas effects. The application of the Prhy method in
extrapolating experimental heat transfer data obtained from ground facilities to flight
conditions is also discussed.

A,

~~

1. GEOMETRY AND TRAJECTORY

The configuration selected for this analysis is a delta wing with a hemispherical
nose cap and cylindrical leading edges. The dimensions are given in the sketch shown
helow,

A=15° D=yt
—

- 25!

The flight path selected is 20, 000 feet below the equilibrium glide trajectory for a
W/SCL of 150. This path represents a severe reentry heating trajectory., The
15~degree angle of attack approximates the condition for maximum lift to drag ratio
for this geometry.

2, FLOW FIELD AND GAS PROPERTIES

The following information regarding flow field and gas properties is required in
order to estimate turbulent heat transfer coefficients using the p.u,. method:

1. surface pressure and streamwise pressure gradient
2. velocity, u,, and enthalpy, i, at the boundary layer edge

3. temperature, T, or enthaipy, iy, atthe wall
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4, streamline divergence parameters r and f
5. diffusion parameter &

6, viscosity, p, partial Prandtl number, O and compressibility factor-
temperature product, ZT.

The flow field parameters (items 1 through 4) must be specified at ail points
along a streamline. The gas properties (items 5 and 6) are usually specified as a

function of pressure and enthalpy.

a. Surface Pressures

Pressures along the delta-wing lower surface are obtained using methods pre-
sented in Reference 2. The expression for sharp delta wing pressure coefficients is:

_ . sin(a+ &)
Cp = 2 (sina) [_—cos§ (15)
The shock standoff angle ¢ is obtained using:
566
Po\[tana \"°
£E=170 < pe) <tan A> (degrees) (76)

Equation (76) is an empirical fit to numerical flow field solutions obtained on a sharp
delta wing using the method of Reference 12. Results from this method are in good
agreement with those from Peference 4.

The influence of nose bluntness is estimated using the following equation suggested
by van Hise (Reference 15).

C,-C R T (17

The drag coefficient for the hemisphere (CD, n) is assumed to be 0.8, which is
obtained by integrating the heniisphere pressures given in Reference 4.

Fressures on the leading edge are computed assuming the shock wave is parallel
to the surface., For this case, the stagnation line pressure is equal to the total pres-
sure based on the flow component normal to the leading edge. Except very near the
nose, real-gas effects on pressures were found to be small at the flight conditions
considered, and are neglected in this analvsis.
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b. FEdge Velocities

The velocities at the boundary laver edge for the sharp delta wing case are com-
puted using Equation (78) which i< an empirical expression presented in Reference 4.

£ (78)

Where ¢ is in degrees.

The velocities for the normal shock calculations are computed assuming an isen-
tropic expansion from the stagnation peint. Bluntness effects on heat transfer are
estimated from the sharp and normal shock results using Equation (74).

Consistent with the parallel shock assumption, stagnation line velocities are
obtained hy:

u
e —
u = coSs Aeff (79)
For an unyawed condition, the effective sweep angle (Ag¢f) is expressed by:
_ ..=1 /sinA
Aeff - sin (sina) (80)

c¢c. Wall Temperatures

The wall temperatures are assumed to be constant over the vehicle at any given
instant of time. These temperatures are given as a function of velocity and altitude
in the following table.

V., ft/sec ALT, ft Tw» R
18,700 187, 000 3040
16, 000 171, 500 2960
14, 000 160, 500 2840
12, 000 149, 000 2660
10, 000 137,500 2400

8, 000 125, 000 2100

These temperatures are representative of equilibrium values for a radiation cooled
surface.
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d. Streamline Divergence Paranieters

The streamline divergence paramet<rs r and f are computed using Equations
(52) and {53) presented in Section V.

e. Gas NI')EE‘!

Most of the heat transfer calculations presented in this section are for air in
chemical equilibrium for an ideal gas. However, comgutations for a frozen {low are
shown at the enthalpy for peak turhulent heating (V,, = 18, 700 fps). Since .. uilibrium
flow implies infinite reaction rates and frozen flow zero reactions, differencss in
heating rates for these conditions are indicative of the maximum influence of reaction
rates on turbulent heating.

1) Chemical Equilibrium

The turbulent heat transfer estimates for equilibrium flows were obtained using
the p,.p,. program described in Volume IlII, The diffusion parameter & is computed
from Equation (21), and the stagnation reference viscosity p, from Equation (19).
Other thermodynamic and transport properties are essentially the same as those pre-
sented in Reference 16,

2) Frozen Flow

For this case, the gas is assumed to be frozen at the stagnation point composition.
This composition and the corresponding thermodynamic and transport properties are
computed using the equations presented in Reference 16. The stagnation point gas
composition was obtained from Reference 17. The flow properties on the wing sur-
face are based on an isentropic expansion,

For the range of temperatures considered, the vibrational energy level of the
diatomic molecules can be considered to be proportional to the translational and
rotational energy levels, This approximation greatly simplifies computations since
the specific heats cp ard c are then constant with temperature.

By definition of frozen flow, no chemical recombination of atoms occurs. Couse-
quently, the energy absorbed in disscciation must be considered unavailable in com-
puting the total enthalpy of the flow. For the present case, the total enthilpy of the
flow at the boundary layer edge is reduced by dissociation to about 47 pertent of the
free-stream value at V, = 18,700 fps. The resulting decrease in adiabatic wall
enthalpy causes a substantial reduction in heating rates., The frozen flow adiabatic
wall enthalpy is given by:

i =l +(l-r)i =, 4 (1 - 1)
b = Tle )i, = 47l 4 (1 - 1) (81)




ps

A second frozen-flow heat-transfer calculation was made that differs from that
described previously only in that the adiabatic wall enthalpy is based on the total
enthalpy of the free-stream flow as follows:

. _ o A o
law rl + (1 I‘)le (82)

The second approach is presented to furnish an estimate of the influence of sudden
recombination of atoms or. heating, A noncatalytic wall is assumed in all cases.

3) Ideal Gas
Since the gas composition is assumed to be frozen in the free-stream state, the
ideal gas case is a special type of frozen flow, Viscosities are computed using

Sutherland's law. The usual thermodynamic parameters for low temperature air
given below were assumed.

y= 1.4

(¢
"

p = 6006 ft°/sec’-°R

1716 ft2/sec2—°R

<
]

N
1]

1.0

3. BLUNTNESS AND REAL GAS EFFECTS

Bluntness effects on the Stanton number along the wing centerline are illustrated
in Figure 12, At the highest velocity considered, the influence of bluntness is seen to
extend only about 2 diameters downstrearm of the nose cap. At lower velocities and
altitudes, the boundary layer displacement thickness is smaller; consequently, blunt-
ness effects extend much further downstream, The sharp body estimates in computing
tke blunt body heating rates are based on local velocities and enthalpies for a sharp
wiig, but are adjusted to account for bluntness effects on local pressure.

Real gas effects are illustrated in Figure 13 which shows Stanton numbers for
equilibrium, frozen, and ideal gas flows, all based on normal-shock theory (see
Section VI). The frozen flow estimates are seen to be substantially lower than the
equilibrium values, evea when the adiabatic wall enthalpy is based on the free-stream
total enthalpy.

The comparisons shown in Figure 13 are unrealistic in that the frozen flow com-
position applies only to the flow originating at the stagnation point. A more meaningfu!
comparison is given in Figure 14, which shows the blunt body estimates obtained using
Equation (74). The frozen flow composition is assumed in computing the normal-shock
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values, and equilibrium flow is used in computing the sharp wing heating rates. It is
seen that for this case reaction rates influence heating only near the nose cap. The
ideal-gas Stanton numbers are about 40 percent lower than the corresponding equilib-
rium values,

4, EXTRAPOLATION TO FLIGHT

At this time no test facility except hypersonic gun ranges, is capable of duplicating
hypersonic flight conditions for speeds greater than about 10, 000 feet per second.
Except for shock tubes, the total enthalpy is less than high-speed flight. Shock tubes
are capable of simulating enthalpy but are limited to low Mach numbers. For this
reason, empirical methods alorne cannot be relied upon to provide accurate heat trans-
fer predictions for hypersonic flight. However, analytical methods alone are not ade-
quate for predicting hcating on realistic aerodynamic configurations unless supported
by test data for that specific configuration. It therefore becomes necessary to inter-
pret test data obtained from ground facilities in such a way that these data can be
reflected in predictions for flight. One approach for making this interpretation is to
extrapolate these data to flight conditions using analytical methods. In performing
this extrapolation, it is convenient, whenever possible, to normalize Stanton numbers
with respect to some reference condition such that the normalized Stanton numbers
are not greatly dependent on flow conditions, The reference condition selected for
this analysis is the stagnation line of an infinite cylinder of one foot diameter and a
sween angle of 60 degrees. The reference Stanton numbers for the tlight path being
considered is presented in Figure 15 for both equilibrium and ideal-gas flows.

The Starton number ratios at the wing centerline are shown in Figure 16. Similar
comparisons for the leading edge stagnation line and the lower-surface leading-edge
tangent lines are presented in Figure 17, Extrapolation factors for two typical wind-
tunnel test conditions are shown in Figure 18. The good simulation of Stanton number
ratios for the stagnation line is not surprising since the reference Stanton number is
also for the stagnation line but at a different sweep angle. However, significant differ-
ences in Stanton numbe1 ratios are noted for the delta wing centerline, particularly for
Arnold center tunnel B. These deviations arc duc to differcnces in local Mach number,

cnthalpy level, and the ratio of the wall enthalpy to the total enthalpy.
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SECTION IX

CONCLUDING REMARKS

The p,p, method for estimating turbulent heating rates is well substantiated by
experimeantal data obtained on several body shapes and for a wide range of test condi-
tions. In particular, effects of local Mach number, wall cooling ratio (Ie/iw), three-
dimensional flow, and streamwise pressure gradients predicted by this method are in
excellent agreement with experimental trends. Similarly, the method for estimating
nose bluntness effects described in Section VII, in general, furnishes good agreement
with available heat transfer data.

Methods for predicting real-gas effects are not as well established. The combi-
nation of high pressures and temperatures required to obtain a highly dissociated
turbulent flow is difficult to achieve in ground facilities; consequently, very little data
are available for turbulent flows with significant levels of dissociation and high Mach
numbers,

Whenever possible, it is recommended that the p, ¢, computer program described
in Volume III be used for calculating convective heat transfer rates. However, if com-
putations must be made manually, the simplified equations presented in Appendix B are
recommended. In most cases, the simplified equations provide heat transfer estimates
within a few percent of the complete equations. Handbook methods presented in Refer-
ence 5 will also provide heating estimates that are in good agreement with the py,p,
computer program except for delta wing surfaces. Significant discrepancies in heating
estimates on sharp delta wings can occur because of differences in methods of deter-
mining three-dimensional parameters.

The purpose of developing the turbulent nonsimilar method was to furnish a basis
for evaluating the profile parameters appearing in the equations and to substantiate
the method presented in Section VI for estimating effects of wall temperature gradients.
Unfortunately, it was impossible to complete these studies during the present investi-
gation. Numerical instabilities often developed when pressure gradients were impcsed
on the flow. Although measures were usually found for eliminating these instabilities,
they resulted in substantial increases i computing time.

In spite of these difficulties, the turbulent nonsimilar method is believed to repre-
sent a new and promising approach in treating turbulent flows. This approach offers
several advantages over previous methods. Empirical correlations are used only in
defining Reynoids stresses, and no assumptions regarding velocity profiles or shear
distributions are required. Since the flow equations are solved in partial differential
form, no coordinate transformations are required. Such transformations usually
impose restrictions on boundary conditions and flow similarity. Skin-friction coefii-
cients and heat-transfer rates obtained using this method are in good agreement with
experimental data over a wide range of test conditions.

(1)
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APPENDIX A

DERIVATION OF THE PLH. METHOD

The derivation of the p p equations presented in this appendix is based on a
solution of the boundary layer energy integral equation. A similar derivation based
on a solution of the momentum integral equation is presented in Appendix B of
R: ’erenee 2. The present derivation is given in the following parts:

1. Derivation of a general form of the boundary layer energy integral equation.

2. Transformation and solution of the energy integral equation.

3. Solution of the momentum integral equation.

4. Evaluation of laminar boundary layer paramecters.

5. Combined laminar and turbulent method.

A simplified version for making hand ealeulations is presented in Appendix B and
the IBM 7094 digital eomputer program using the equations presented in this appendix
is deseribed in Volume III.

The correlations given in part 4 of this appendix are the same as those presented
in Reference 1, but differ from those of Referenee 2. However, differences in heating
rates eomputed using the present eorrelations and those of Referenee 2 are small.

1. DERIVATION OF THE ENERGY INTEGRAL EQUATION
This derivation is restrieted to the vieinity of a plane of symmetry as well as by

the usual boundary layer assumptions. The mass and energy eonservation equations
for boundary layer flows are given by Equations (A-1) and (A-2), respeetively:

1 spug  ppv, 8PW _

A-1

g 0ox oy 9z (A-1)
QPPN SRS ) G TN TUL) ]

puax+ pv ay+ pw az—az,r = (A-2)
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' The corr :sponding control volume is shown in the following sketch:
; z,w
4 By
P &

The length elements in x and z are unity. However, the length element in y is
determined by the function Ay = g(x), which remains arbitrary (subject to the restric-
tion that dg/dx remains finite). Later it will be seen that in most cases the most
convenient choice of g is dependent on the geometry of the body under consideration.
The surface y = 0 is by cefinition a line of symmetry, hence v. but not necessarily
av/dy . is zero wheny = 0. Also, it should be noted that for turbulent flows the flow
parameters appearing in Equations (A-1) and (A-2) are averaged with respect to time.
For turbulent flows, T repiresents the effective shear stress including the Reynolds
stress. and ¢ represents a corresponding effective heat flux.

The velocity component normal to the body, w, is found by integrating
Equation (A-1) with respect to z:

ar
wool 1 eme_ ol AN et
W = p z oax 2y dz p ( )
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Using Equation (A-3). and assuming that We = 0, Equation (A-2) ean bc written:

z .
ol a1l ol 1 ppug gpv 9q urT)
— —_——— — =+ 2 T = ——— -4
pu 8x+ pv dy 0z ,{ [g ox * oy 2 0z 0z (A-d)
I.. ..Jer to obtain the boundary iayer momentum integral, Equation (A-4) is integrated

from the wall to some arbitrary loecation (z = h) outside of the boundary lzyer.
Neglecting external vorticity, qz—h = Tz_h = 0, the momentum integral becomes:

k

h Z
ol ol ol 1 dpug 3(pv) g
el —_— - b = ary dz = - -
‘41 [pu ax+ pv ay]dz '{ az ’44 [g ax + ay dZ VA qz:O (A 5)

Integrating the second term by parts and rearranging, Equation (A-5) can be
expressed:

1 h h

. . a a
= = e —— o —_ - A_6
S /(; pug( - 1) dz + 3y /0‘ pv(l, - ) dz (A-6)

Sinece this analysis is restricted to lines of symmetry, it can be easily shown that:

\Y
a —
9P, ("e )
—=0, =0
ay oy
and
o Tl
oy

In the present analysis it is further assumed that:

ai _ s
(law lW)

=0

ox
The influence of wall temperature gradients on heat transfer is treated separately in
Section Vi.




g

Thus. Equation (A-G) can now be expressed in terms of the heat transfer coefficient,

H, as follows:
“ a8 fh Py [ ! ] W
pue(l -i) peu.3 9X peue i =i

e aw W 0 aw w

X 1 apcueg fh pu[ Ie—I ]dz
peueg 68 0 peuel.law-lw

ave,/ay h v Ie—I ]
———me f _p\—[T_-T dz (A-T7)
ue 0 pe el aw wJ

Now, introducing the boundary layer thickness parameters, energy thickness:

h I -1
_ Pu c
Q =f 5o [ = ]dz (A-8)
0 ce

1
aw W

and the crossflow energy thickness ratio:

1 h v Ie-I
Q f pv [i i ]dz
0 pe e \

€

Ecuation (A-7) now reduces to:

au ap ov /ay
.68, Q[_l_é_g+i79 _1_?§+g__e_]
p Y, X u, 9x  p, 9X g dX u

(A-9)
Note that € and ave/ay are determined by the definition of g, which is still
arbitrary. Since results obtained from Equation (A-9) are independent of this defini-
tion, the selection is made colely on the basis of convenience in evaluating the

appropriate flow parameters.

It is seen from Equation (A-8) that an exact evaluation of € requires a solution of
hoth the streamwise and crossflow velocity profiles. Such solutions are available only
for 'aminar flow over simple shapes. It is therefore desirable to define g in such a
way that € and avc/ay reflect only the influence of crossflow pressure gradients.

For this case g reflects only the streamline divergence due to body geometry. In the
ahsence of . more exact approach. g can be assumed to be proportional to the body
radius of curvature, r. normal to the streamline. In order to be consistent with the

H0)
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vy

most coinmon symbology, r is uscd in place of g in the following analysis. Also. the
streamline divergence due to crossflow pressure gradients is denoted by f. where f
is defined by:

v
1af 1 e
e
Using Equation (A-10), Equation (A-9) can now be expressed as:
_ 1 3 €
H———g?’;-(%uerf Q) (A-11)

rf

2. TRANSFORMATION AND SOLUTION OF THE ENERGY INTEGRAL EQUATION

a. Transformation

In order to obtain a more useful form of the energy equaiion, a modified
Stewartson transformation suggested by Mager (Reference 3) is adopted in which:

X p_u
X = f F pr T ax v=%,—
(0] o“o
F
Z l“
z=Ffpidz =
o %o F
u iW
U=— [ == (A-12)
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The stagnation values of density and viscosity, p, and p,, are required to be
constant, and F is an unspecified function of X only. With these definitions, the
energy thickness and heat transfer coefficient in the transformed coordinate systern
are, respectively:

h 3 Ie-T .
Q= == dZ=F —Q
i o= P
0 e aw w o
K
ﬁ=1§ p° °H (A-13)
r“r

€, r, and f are unchanged by the transformation. The transformed energy equation
now becomes:

I

- 1
H=— 3%

; (poUerfE‘Q) (A-14)
r

b. Solution of the Transformed Integral Equation

In Appendix B of Reference 2, the transformed momentum integral equation was
solved by assuming a transformed Blasius shear law given below:

?w Cm
U 2 (.U ®/ )l/m (A-15)
Po"e PoCe Ho

The exponent m is unity for laminar flows, and approximately 4 for turbulent
boundary layers. However, by leaving m unspecified the following analysis is valid
for both types of flow.

Assuming unit Prandtl number and, neglecting the effects of streamwise pressure
gradients, the enthalpy can be related to velocity by the well-known Crucco energy
relationship given hy: ’




For this case it is easily demonstrated that the following expression relating
heat transfer coefficient to energy thickness corresponds exactly to Equaticn {A-15):

— pOUC
fi=C (A-16)

& (p, U/ uo)l/m

The form of Equation (A-16) is retained in this analysis, but the constant C, is
renlaced by Cq- This substitution is necessary to account for differences in the
constant resulting from errors introduced by using the Crocco approximation.

Using Equation (A-16), but with the new constant, Equation (A-14) now becomes:

-1 1 -1 1 9
Cpld™ ™ gL 2 (o v ki) (A-17)

rf
Equation (A-17) can be solved for (PyU.Q) by multiplying both sides by

l nt1

(v U Q™ () O

b

rearranging, and integrating both sides with respect to X. Using the boundary
condition that either Ug =0 or Q=0 at X = 0, the solution is given by:

o ‘|1/(m+1)
Eﬁr?l CQ poUeMol/m( f )(m+1)/m XJ
1/m 0
(pUQ " = = (A-18)
o e (rfe)l/m
Substituting Equation (A-18) into (A-16):
- Q ()U (r fe)l/m o Vm
i= (A-19)
X 1/(m+1)
/ ml. ooy y 1/m (rfg)(m+1)/mdx-|
m Qo o
’ ]
6H3




In the untransformed physical plane, Equation (A-19) is:

(1-m)/m, _.1/m
o CQ pr“rue . (rf%) A2
[ 1/(m+1) ( )

X
1]

x -
™o ooy (S M/m g
m Qrre

Neither Pj nor F appear in this equation, and their definitions are therefore
immaterial. It was stated earlier that p, was independent of x. The preceding
sclution is valid only if m is constant with x. If CQ is also assumed to be indepen-
dent of x, Equation (A-20) reduces to:

m 1/(m+?) m/(m+1) %ﬁ m/(m+1)
(5) (CQ (B (PLpu)
"= . Vmy A2
: 1 J(J ¢.(m+1)/m
3 — P uu (rf) dx
| pr“rue(rfe)(nﬂ-l)/m o rre

It is convenient to express CQ and m using the following:

1 m 1

1 1 1
@gﬁm-wdmp=%?fﬁ

™

where Cgp it the flat plate value of

1 m

m+1 CQ

T TR

and J reflects the influence of streamwise pressure gradients. Correlations of exact
laminar boundary layer solutions show that Cpp can be expressed by:

£
: C.,= 332
FP Fp.

Based on this result, the following expression is assumed to apply to hoth laminar and
turbulent flows:

m1 C &J
X

(;ﬁ% cQ) Sy S (A-22)
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where Cy is approximately 0. 332 for laminar flow, and is a constant to be specified
later for turbulent flow. Using Equation (A-22), H can now be expressed in the more
familiar form shown below:

m
Cx't"'"o prpruexe ™
H-= d (A-23)
F_ x 2
Pr eq H
G
where Xeq is an equivalent flat plate length parameter defined by:
- (m1)/
x p pu (€)™
i rre
Xeq z (m+1)/m / 2 o (a=24)
J yrprue(rf ) 0 PO

Equations (A-23) and (A-24) are equivalent to the result reported in Appendix B of
Reference 2 with one exception. The exponent € in Equation (A-24) appears in place
of the crossflow momentum thickness ratio, E, in Reference 2, where:

/h ov [ a\,
- i-—j)az
0 P\e u

E-—r = = (A-25)
| B p-d)e
0 pec e

'f the Crocco energy relationship is assumed, it is easily seen that € and E are
equal. Considering that approximate methods must be used in evaluating either € or
E . particularly for turbulent flow. it appears reasonable to have the same approxima-
tions for both parameters. Accordingly, € is replaced by E in the following analysis
is order to make the nomenclature consistent with that of previous publications (e. g. .
References 1, 2, and 3).

3. SOLUTION Or THE MOMENTUM INTEGRAL EQUATION

The purpose of this derivation is to obtain expressions for momentum thickness
and skin friction consistent with the heat transfer expression given by Equations
(A-23) and (A-24).




The boundary layer momentum integrai is given in Appendix B of Reference 2 by:

Tw 96 2+ 5%/ aue 1 % ar E of
=—4+8 —_—t = — = — 4 = — (A-26)
2 23x u 9x p 9 rodx f 9x
pu e e
ee
where 0 is the boundary layer momentum thickness.
Equation (A-26) can be rearranged into a simple form similar to the energy
integral expression given by Equation (A-11), giving:
Tw 1 a A _E
u A1 _F <°eue £ 0) (A-27)
e ue rf

where A=2+ 6x/g,

Applying the Mage1 transformation defined by Equation (A-12), Equation (A-27)
becomes:

?w 1 -]

A_A-1 fE
S —— 2 byt i) (A-28)
Ue UAlFAlrfE 9% (e e
e
where
- Tw [/Poio
w2
F pr”‘r
and

By replacing the left side of Equation (A-28) with the transformed Blasius shear law,
Equation (A-15), an expression for ® is obtained in the samc way as was Q in part 2
of this appendix. The result is:

m

X m+1 m+1

1 -
ml L Al o U Aul/m(rfE) m g
0 m m 0o e (o]

®= _ (A-29)
Fp U rfE
oe
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In untransformed physical coordinates. thc equivalent expression for 0 is:

m
1-m m+1 m+1

9 = (A-30)

The momentum thickness is related to skin friction by the modified Blasius shear
law given by Equation (A-15). The untransformed equivalent of Equation {A-15) is
given by:

Tw  Pr¥yYe ('m
u /" \1m SR
e %o fpu ¢
e e
Ho
Substituting Equation {A-30) into (A-31) gives:
1-m 1
E,m
L’_ Cm“o pr "‘rue(rf ) A-32)
u, N 1 (
x1 1-m A(m+1)-1 m+1 m+1
m1 m m E, M
[ = Gl B0 C

Assuming that C., is independent of x, it can be expressed in a form similar to that
for Cq in Equation (A-22) by thc following:

1

m fis22) nrl m+1

the profile parameter Cy is the flat plate value for

( m) and C m+1.
m+1 m

and P reflects the influcnce of streamwisc pressure gradients.

Sre
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Using Equation (A-33), Equation (A-£2) can be reduced to a form similar to that
for H given by Equation {A-23). The corresponding skin friction cxpression is:

C m
Tw _ xp':i (N )m+1
u S_ “R,r.S

e eq

(A-34)

where:

_ Pt rueseq

R,r,S 2
uO

N (A-35)

and the skin-friction equivalent distance is defined by:

X m+]1

1 _ —
E. M
[ prurue(rf ) dx

Seq” — (A-36)

E. M
Pp puu (rf%)
Using these definitions for Np . S and Seq’ Equation (A-30) simplifies to:

m+1

m+1 Ko m
9 - m Cx pe_ue (NR, r’ S) (A-37)

4, EVALUATION OF L MINAR BOUNDARY LAYER PARAMETERS

Exact solutions ¢ . the similarity form of the laminar boundary layer equations
were used to evaluate the parameters appearing in Equations (A-23), (A-24) and
(A-32). This was done in an orderly manner, beginning with two-dimensional
constant-property constant-pressure flow, and progressing to the most complex con-
ditions for which exact solutions are available. The evaluations determined from the
simpler cases were retained or amplified in analyzing the more complex cases. Thus,
the constant C, for laminar flow is always taken to be 0. 33206, the value given by
Howarth in Reference 18 for incompressible flat plate flow. The effects of pressure
gradients, wall cooling, etc., are accounted for in other terms of Equations (A-23)
and (A-32).
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In some cases, alternatc aefinitions were possible. For cxample, the authors of
References 19 and 20 incorporated (in effect) pressure gradients into the term p ..
appearing in Equation (A-23), whilc in the present formulation such eifects appear in
thc heat transfer equivalent distance x cd’ The latter definition is to be preferred as
the former cannot b¢ made consistent \&h the results of Reference 12, which presents
solutions for various pressure gradients, but with pu held constant. The definitions
used here were adopted only after an cxamination of several possible alternatives.

The criteria for selection were consistency between the results of the various special
cases, conforinity with physieal considcrations, accuracy, simplicity, and freedom
from interdependencies.

a. General Considerations

As a matter of physical consistency, it is required that if the fluid properties p
and p are constant through the boundary layer then the reference values of the fluid
properties be equal to those constant values. This principle is extended to constant
products as well, i.e., it is required that when in a given numerical calculation
(e.g. . References 12 and 21) the product of density and viscosity is held constant at
some base value (usually the wall), then the reference density-viscosity product,

p M, , must also be equal to that base value. The functions Fpr and &£ are equal to
1.0 when ¢ and Ny, are equal to 1.0, and £ = 1.0 for ideal gases. Also, in flat
plate flow the equivalent distance is equal to the physical distance from the leading
edgce.

b. Two-Dimensional Flat Plate Flow

The special case of two-dimensional flat plate flow is examined first since the
effect of fluid property variations withii the boundary layer can be cxamined without
the additional complexity of streamwise variations. For the case of constant fluid
properties, the solutions of Howarth (Reference 18) show that m =1 and C, =.332,
so that Equation (A-23) becomes:

1
£ [P MU 2
H=.332 - (A-38)
FPr xeq
1
2
£ [P.BU
=.332 — (=2 °° (A-39)
FPr X

where Equation (A-39) follows from the principles stated in the preceding paragraph.
For this special case, the only undetcrmined quantities are the Reynolds analogy
factors &£ and Fp,. Note that the reference stagnation viscosity, p,. no longer
appcars.

(9



c. Reynolds Anslogy Factors

Following the practice of Reference 19, for example, the Prandtl number effect
is correlated in terms of o, the partial Prandtl number for translation, rotation, and
vibration. The Prandtl number effect on Reynolds analogy in flat plate fiow, usually
given as Fp_ = (0)2/ 3 for constant o, is somewhat better represented by o 645 55
may be seen in Figure 19.

For variable Prandtl number there is an uncertainty as to which value should be
used in correlating its effect. All solutions in the literature for which the Prandtl
number is variable also involve variable pu, so that p,.p . is not necessarily equal
to pepe. For such cases, it was found that the Prandtl number should be evaluated
at the enthalpy and pressure corresponding to p.p,.. This value of the Prandtl
number is hereafter denoted as 0.

When the Prandtl number effect is correlated in terms of the partial Prandtl
number, the effect of energy transport by diffusion must be treated separately. The
first exact calculation of this effect is reported in Reference 19, wherein the
expression:

q
NLe=1

qNLe £1 52 .o

L=r-—"T—= - - -
1+ (N (A-40)

was found to agrec well with exact solutions for Ny, = 1.4 in stagnation point flow.
In high Mach number flows, however, Equation (A-40) may predict a significant
diffusion effect under conditions for which no dissociation actually exists, since the
temperatures within the boundary layer may be well below the stagnation value. To
avoid this inconsistency, Equation (A-40) was modified to operate on the local
reference enthalpy, corresponding to p.pu.., rather than the stagnation value. The
modified expression is given by:

] i
£=1+<N ’°2-1>—r.—’l—) (A-41)

Calculations made by Cohen (Reference 22) of Lewis number effects for non-
stagnation boundary layers are shown in Figure 20, along with computations from
Equation (A-41).

d. Refcrence Density-Viscosity Product

The rcference density-viscosity product was first evaluated for zero Mach number
with various degrees of wall cooling using the solutions of References 20, 23, and 24
and some unpublished solutions by Halvorson and Cassmeyer of The Boeing Company,
as shown in Figure 21.
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)
Reference 7
Prondtl number Constant
Specific heat Coastant
pp product Variable

a

23
Constant
Constant
Constont

A

22
Variable
Voriable
Voriable

2

Figure 19: LAMINAR PRANDTL NUMBER EFFECT ON
REYNOLDS ANALOGY FACTOR
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For edge Mach numbers greater than zero, it was found that the reference
density-viscosity product p.p, can be represented as a function only of P 4,
PwHy and pgpg wnere the latter is the density-viscosity product evaluated at
stagnation enthalpy and the local pressure. The correlation obtained is given below:

T 1
8 ol
~ (pe“e)eff J 1.2 10 A-42
Pk PLB (A-42)
Pwhtw l (pe“e)eff
2 _—
PwHw
where
p.H
,1_3_'_2 exp ..K*
16 16 Py
= *
: (peue)eff 5 pe“e
; and
4 1
: =
3 Kk = Pgtg 1.005 14
Pebe pSI“‘SI !
.005 +
Pebe

Equation (A-42) is plotted in Figure 2 (Section IIL 1) using the approximation that the
exponent K* [(pghe)/ (Pyky)] is unity. The contribution of this term is small, and
Figure 2 can be used to obtain p.p,. without introducing significant errors. Sub-
sequent investigations have shown that p . is independent of pressure gradients, as
demonstrated by comparisons with exact solutions shown in Figurs. 22.

e. Pressure Gradient Effects

1) Evaluation of J; and E

Referring to Equation (A-23) and recalling the earlier comment that Cy, m,
Fpr, and £ are by definition taken as the flat plate values, it is seen that all pres-
sure gradient effects are reflected in P .p, and x,,. These effects can be evaluated
for similar flows from the solutions published which consider streamwise pressure
gradicents, (e.g., References 12 and 20) and those which consider crossflow pressure
| gradients (e.g., References 21 and 22).
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Beginning with the simplest possible case, two-dimensional flow of an ideal gas
with unit Prandtl number, and the viscosity proportional to temperature, the equiva-
lent distance effects can be isolated. Since pp is always equal to p.p. ., then [T
is also equal to p_p,. (Note that pp is not necessarily constant through the flow
field, but varies with the local boundary layer edge pressure.) With these values
incorporated, the equivalent distance expression in Equation (A-24) reduces to:

r1
p pu dx
__l_'l() e ee
ed JL Ipe“euel
X

X

(A-43)

In Equation (A-43) the term p, p i, reflects the cifects of upstream variations, while
J1, accounts for local streamwise pressure gradient effects on the boundary layer
profiles.

A correlation has been feund for J L which may be written:

JL= 1+.718(y1+ FBFZ- 1)] when 820

and
JL=[1+'718(‘/1+ FBFz-l)]-1 when B<0 (A-44)

where 3 is the dimensionless pressure gradient parameter similar to that defined by
the authors of Reference 11. The parameters B8, F,, and Fz are defined by
Equations (A-50) to (A-53). Subsequent investigations of exact solutions for non-unit
Prandtl number and nonlinear viscosity laws have shown that expressions of the form
of Equation (A-43) are vzlid for these more complex conditions as well, either for
two-dimensional flows with streamwise pressure gradients, or for yawed cylinder
flow. The expressions finally adopted are:

(prur)ﬁ = (prur)6=0 (A-45)

and a generalization of Equation (A-43):

— (A-46)
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where;
2
G.=p wu (rfEL) (A-47)
L rre
= + o, - >
3 l1+ 718(\/1+Fﬁ'st's l)lwhen 830
-1
= . - : < -
Iy [1+ n8(V1+F, Fy 1)| when B<0 (A-48)
= _ _ expK _
E =1+.718(V1+ Fy Fy o~ D@ (A-19)
where:

exp K=0 when N<.05 and .99 < N<1.01,

exp K = -. 194 exp '-%N(N-l)] when .05 <N <.99,
t

2 . x o(rf)
=, -—(N- , >1. =)
exp K 194 exp l 3(\ 1 ] when N >1.01, and N T ox

The subscripts s and c¢ are introduced to distinguish between streamwise and
crossflow pressure gradients; it should be noted that Jj is concerned only with

streamwise pressure gradient effects and EL only with crcssflow effects; also, note
that J;, = 1.0 for Bg=0.

The functions F,. B, Fy. and I are given for either streamwise or crossflow
pressure gradients by the following expressions:

(a) Streamwise Pressure Gradients:

(ZT)e/(ZT)S ]
1+2 [*ie/le ] B
F p—

B.s  [@T) /@7, .
T ]t s

(A-50)

=1




where
|

8 dlnx IG xl (A-51)

L

1 X
F - z s ok law 355
Ts” 402 \T 9y (A-52)
and
(¢ (ZT)
s m,s

ze= = (A-53)

! Pr,s (€TDg

The subscript m denotes evaluations at local pressure and a mean boundary layer
enthaipy defined by:

o™ B0 - 1) (A-54)

The second equality in Equation (A-53) follows from the condition of constant pressure
across the boundary layer.

(b) Crossflow Pressure Gradients:

Ty

FB,c= ﬁc= 1 (A-55)
i o _ ZC .294 355 -
z,c .402 r (e
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The subscript SL refers to the stagnation line and 2Ty, o 1 evaluated at local
pressure and a mean boundary layer enthalpy defined by:

i =.5(_ +i
@,

m. e + . 206 (le = Ie.SL) o (A-58)

e,SL)

With a minor modification of x,, . itis easily shown that the definition of 8,
given by Equation (A-51). is identical to the correspond” .. ‘(1eter of Reference 12.
The expressions for obtaining Ji, . Equations (A-48) and(A-50) to (A-54) wcre
developed on the basis of provicing the best fit to the exact similar solutions shown in
Figure 23. However, the o)vious similarity of Equations (A-50) to (A-54) to the
various reference enthalpies appearing in the literature provides some analytical
justification for these correlations.

The equations for obtaining J; furnished a basis for determing E. The cross-
flow pressure gradient parameter B, was assumed to be unity, which is the value for
an unyawed cylinder. Comparisons of E from Equations (A-49) and (A-55) to (A-38)
for swept cylinder flow are shown in Figure 24. Similar comparisons with yawed
cone solutions are presented in Figure 25. The term (2zc)eXpK was developed on
the basis of the yawed cone comparisons. Note that this term i3 unity for the cylinder
case.

2) Evaluation of PL
Correlations of "exact' laminar solutions show that the influence of streamwise

pressure gradients on skin friction, which is reflected in Py, can be easily related
to the corresponding effect on Jy,. The relationship is:

P .=J (A-59)

Comparisons with solutions presented in References 11 and 22 are shown in Figure 26.
Equation (A-36) now becomes:

X1
G_dx
’4 L eq
= = (A-60)
cq b5} 4
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5. COMBINED LAMINAR AND TURBULENT METH()D4

The Pk, computer program described in Appendix D is intended for making
heat transfer and skin friction predictions for both laminar and turbulent flows. For
computer purposes, it is convenient tc utilize parameters comnion to both laminar and
turbulent boundary layers whenever possible. A problem is encountered in defining a
reference Reynolds number since the equivalent distances x,,, Equation (A-43), and
Seq * Equation (A-60), are usually different for the two types of flow. To remedy this,
the following definitions for reference Reynolds numbers are used:

= _ pr“ruexeq, L _
N LB b (A-61)
R, r,Q r u 2
(Fx.a")
and
_ p_puS
N -_rreeqlL (A-62)
R,r,S F 2
( x,S“o)
where
1
17 3
Frq® JL20 <b_eﬂ (A-63)
’ eq, L
1
g—] beq T ’
Fes™ |°L (b > (A-64)
eq, L
1
/ Gde
0
= (A-65)
" Tea],
1

4 Parameters defined in this section are used only in the P.H, computer program
and except for Appendix C are not used elsewhere in this report.
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b ‘ = (A"GG)
],
1
5 4
- 10 10
eq.L” 'L *eq,L™°L “eq,L (A-67)
i and
T
= 3 -2
i Seq.L_ IL Seq,L— I, beq,L (A-68)

Definitions for Gy, G, J,, Xeq, L’ and Seq, L are given in preceding seetions of
this appendix.

a. Laminar Flow

Using the definitions given ahove, the general expressions for heat transfer,
Equation (A-23), and skin frietion, Equation (A-34), beeome; respectively:

- m
H = Cx“tQLFx,Q N y 1 A-G9
T .645_ ( R,r,Q) ( )
(o] X
r cq, L
and
! 1 P n _ﬂ
Two_ Lx"opLFﬁ (ITI )rr'+1 A-70"
u S R,r,S ( :
e ¢cq, L
where
3
— 10
: L
"é and
3
By
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b. Turbulent Flow

For turbulent flow, the form of Equations (A-69) and (A-70) can be changed to the

Schultz-Grunow form given by Equations (13) and (14). The final turbulent equations
then become:

185, Q) F, o Np g
H= (A-71)
o 8493 log. (N + 3000) 2 9%
eq, L %10 R,r,Q )
and
Ty 189K PLF s NR,r,S
o 3 = 2. 584 (4-72)
e eq, L log10 (NR, r.S + 3000)
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APPENDIX B

SIMPLIFIED p_.u, METHOD

The complete p .p,. equations presented in the text «f this report are intended for
computer use only, since manual computations are exceedingly tedious. However,
simplified equations have been found that greatly reduce the work required in making
slide rule calculations with littie loss in accuracy. First, general simplifications
for arbitrary geometries are presented, and secondly, equations for a few specific
body shapes are given. Comparisons with results obtained using the complete pppp
equations are also shown,

1. GENERAL SIMPLIFICATIONS

a, Evaluation of pppu,

A convenient method for estimating ppp, presented in Reference 2 provides
values within about three percent of those obtained using Equation (A—42). The
suggested expressions are:

={ 1 6 - 6 Efgﬁe_)gf_f
Pobp = (PgHdegr | 1 ) (pw“w)
= 1.85 - .85 pS'“S' B-1
(pe ‘ue)eff pS' “sv . . o1 ( )
ere

Note that pgrigr is evaluated at the stagnation enthalpy and the local pressure.

b. prky Variatior -vith x

Unless large variations in wall temperature occur, p,i, can be considered to
be proportional to pressure along a given streamline. Also, the effect of the pres-
sure gradient parameter JT on heat transfer can usually be neglected. For example,
the pressure gradient eifect on the peak turbulent heating rate for a hemisphere is
only about 3 or 4 percent. With these approximations, Equation (8) reduces to:

X1 ;

-b' (7]

1 -
= o ,,_ff)':’/‘l peue (rfE) dx {B-2)
ee

x 1T
X




and
Pk = (o, ur)m (P /P )

The subscript mi denotes that the evaluation is made at approximately the mean
pressure along the streamline.

c. Evaluation of ET

For most cases the influence of the following term appearing in Equation (32)

can be neglected:
@ zc)exp K

Note that this term is large only when (x/rf) (9rf/9x) is small; consequertly, the
influence of ET is also usually small. In addition, it is seen in Figure 7 that ¢
varies only from .68 to .776. Thus, using an average 0, = .728 in computing

o 355~ 893 (B-4)

in Equation (A-56) will result in, at most, an error of 2.4 percent. Equation (32)
can now be simplified to

1+.718(\/—1+—F2_—'-1) 4

= ~ s l- ,c _
Ep= 1+'°5( 14 Fr cro 1) 1+.718 (\/T"F—” -1) (B~5)
Z,c,0
where
Fz = 2,22 (z:c -.294)
Equations (A-57) and (A-58) define £, and Equation (30) defines Z, o Equation

(B-5) is plotted in Figure 27 to facilitate computations of E Te

d. Evaluation of £ and Fp,

For real-gas flow in chemical equilibrium, the diffusion influence parameter
can be obtained either from Equation (A-41) or Figure 20. However, this term is
usually quite close to unity. The meximum value of £ obtained from thermal analysis
of the reentry vehicle presented in Section VIII was 1.04, representing a correction of

oanly 4%.
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Figure 27: TURBULENT CROSSFLOW MOMENTUM THICKNESS RATIO
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Similarly, when using Equation (20), the approximation that o, =, 728, or
g . =.815 (B-6)

can lead to, at most, an error of 4.3 percent,.

e. Summary Heat Transfer Equation

Using all of the approximations given above, Equations (13) and (15) reduce to:

N

U
H =228 —° R.r.Q (B-T)
T Xeq.T [log. . (¥ + 30001 | 2- 58

q' glO R,I‘.Q )
N :E (pryl")m “e xeq.T B-7
R,r,Q P 2 (B-7)

m M

The cquivalent distance Xeq, T can be obtained using Equation (B-2) and the
stagnation viscosity p, from Equation (19).

f. Momentum Thickness

An alternate method for computing momentum thickness is provided by:

N
u
6 =.231 2 R.r,S (B-9)
v Pee llog. (N + 3000y} 2+ 584
B10 "R, r, S

If the effects of pressure gradient on the boundary layer profiles are neglected
(Jr = Pr = 1.0), the equivalent distances for heat transfer and skin {riction are
equal, For this case, Equation (B-9) can be written:

0 =§ FPr HT x
T 4 & peue eq,T
HT
~ 1.015 X (B-10)
u eq,T
e e
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2, SPECIAL CASES

In most cases, the most iedious tas!: in computing heating rates is the computa-

tion of the equivalent distance. For many common body shapes, Equation (B-2) can

be simplified further. The following table summarizes the expressions for equivalent
distance for seme simple configurations,

fi ti o
Configuration xeq,T
Flat plate All X
J
| Cone 0 4/9)x
| | i ]
| i | x
| 0 ! =
? | (9/49) + G/H N E.
— - . :
Swept infinite cylinder | ue
stagnation line i 0 — ——
| (5/4) (axe/a)) ET
; f 1 —
Deita wing centerline 0 x
[
l < s _ :
70 n<l 1+(5/4)n[2—n+(n-1)ET] '
— |
# | n>1| - |

1+ (5/4)[1‘+ (n - 1)f;]

Equations for evaluating N and n are presented in Section V for the respective

configurations.

3. COMPARISONS WITH COMPUTER RESULTS

Comparisons of Stanton numbers along the stagnation line of a sharp ogive at
angle of attack are shown in Figure 28a. The simplified Py K, results were obtained

using Equation (B-7) together with an equivalent distance computed using Equation
(B-2). These results are seen to agree within 2 with those obtained using the P K,

program described in Volume III.
typical test condition in the CAL high energy shock tunnel,

The free stream flow conditions represent a
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Similar comparisons along the centerline of a blunt delta wing are presented in
Figure 28b. The configuration and flight conditions (V, = 18,700 ft/sec and ALT =
187,000 ft) correspond to the orbital reen‘ry analysis described ir Section VIII. The
Stanton numbers obtained from both methods have bzen corrected for bluntness
effects using Equation (74). The momentum thickness used in computing bluntness
corrections for the simplified P.#, values were obtained using Equation (B-10).
Results from the two methods are seen to differ by less than about 4%.
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APPENDIX C

TURBULENT NONSIMILAR METHOD

The primary purpose in developing this method was to provide s means of
computing complete boundary layer nrofiles for compressible turbulent flows.
Preliminary results from this analysis are reported in Reference 25. The flow
equations are solved in partial differential form, and unlike previous methods,
empirical correlations are required only in defining the Reynolds stresses. Solutions
obtained in this way are not subject to the usual restrictions regarding profile simi-
larity; hence, effects of streamwise pressure and wall temperature gradients are
easily included. This approach has been successfully used in treating laminar flows
for several years (References 1 and 6).

The turbulent nonsimilar equaticns have been programmed for both the IBM 7094
and the Univac 1108 digital computers. This program, including equations and sam-
ple input sheets, is presented in Volume III. The existing program is restricted to
ideal gases, but real gas effects could be included by adding tables for obtaining gas
properties as a function of enthalpy and pressure,

The development of the turbulent nonsimilar method is presented in four parts:

1. Derivations of flow equations

2, Evaluation of turbulent stresses

3. Heat transfer results

4, Convergence and stability

1. DERIVATION OF FLOW EQUATIONS

Several formulations of the fundamental turbulent flow equations can be found in
the literature (e.g., Refererces 3 and 7), Normally, the suggested expressions
consist of the corresponding laminar equation with an added term, or terms, repre-
senting the influence of the turbulent fluctuations, The flow equations can then be
written for two dimensional flow, in the following form:

)7
_82_(fapu Bu_ 0P, 3f du _
(x~-Momentum) pu % 4 % dy) 2y ax+ 3y <u ay+ TT> (C-1)
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e T TR T TR T

s

y .
) apu . \ 3l ;] g o9 .
(Energy) pu —— - ( f == a,) P =—< —+ ql)
ax h B y dy\Np a)

d au
= -—+ T -2
* ay [u <u ay ¥ T)] (€-2)
(Equation of State) P = pRT (C-3)

7T is the effective turbulent skear and (;T is the effective turbulent heat conduction
term, It should be noted that Tr and dT do not truly represent viscous and conduc-
tion effects, but account for the net effect of the turbulent fluctuations, Except for
these turbulent stress terms, Equations (C-1) and (C-2) are identical with the
corresponding equations for laminar flow.

Minor differences exist in the literature concerning both the definition and
formulation of the turbulent stress terms. However, in the present analysis,
empirical correlations are usc in evaluating these terms, and the exact analytical
formulation is immaterial.
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